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Propagation into an Unstable State 

Gregory Dee 1"2 

We describe propagating front solutions of the equations of motion of pattern- 
forming systems. We make a number of conjectures concerning the properties of 
such fronts in connection with pattern selection in these systems. We describe a 
calculation which can be used to calculate the velocity and state selected by cer- 
tain types of propagating fronts. We investigate the propagating front solutions 
of the amplitude equation which provides a valid dynamical description of many 
pattern-forming systems near onset. 
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1. I N T R O D U C T I O N  

There are many dissipative pattern-forming systems in nature. Examples of 
such systems include Rayleigh-B6nard convection, (1) Taylor-Couette  
flow, (2) directional solidification, (3) and many biological and chemical 
systems. These systems have a number of common features. In particular, 
there exists a "control" parameter, v say, which for v < v~. no stable pattern 
states exist. For  values of v just above vc, however, stable pattern states 
exist. We define a pattern state to be a stationary solution of the equations 
of motion which is a periodic function of the spatial variables. Close to 
onset, i.e., for v > vc, the pattern state is dominated by a single mode. There 
is a dynamical description of these systems close to onset which is given in 
terms of a dynamical equation for the amplitude of this dominant mode. 
This equation is known as the amplitude equation. (4~ 
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The dynamical equations which describe these systems allow for a set 
of possible stable pattern solutions above onset. The question arises, 
therefore, is there a preferred state among this set, which is selected by dif- 
ferent initial and boundary conditions? The answer to this question is no. 
However, there are particular dynamical mechanisms (5) and boundary 
conditions (6) which do select specific states. In this paper I discuss one such 
dynamical mechanism which selects a particular state for a large class of 
pattern-forming systems. The dynamical mechanism has been termed pat- 
tern propagation. (5) This dynamical mechanism can occur under the follow- 
ing circumstances. Suppose we change the parameter v so that the system 
finds itself in a stationary but unstable state. The system is then perturbed 
locally at some point, at the origin say, and subsequently decays to a new 
state. This will proceed by the new stable state forming first at the point 
where the system was disturbed and then a front will develop which 
separates the stable and unstable states. This front will propagate into the 
unstable state and it is the properties of such a front that we address in this 
paper. 

As a mathematical problem this phenomenon has received much 
attention in the past in connection with the velocity of propagating fronts 
for reaction diffusion equations. (7~ However, it is the pattern selection 
properties of the phenomenon which are of interest to us in this paper. In 
an effort to understand the dynamical properties of these rather complex 
and diverse systems we put forward some conjectures concerning the pat- 
tern selection properties of propagating fronts. We also present some trac- 
table calculational tools (5) which enable us to predict some of the proper- 
ties of these fronts for this class of pattern-forming systems. Since the 
amplitude equation describes the dynamics of these systems close to onset, 
it seems appropriate to study the properties of propagating front solutions 
of these equations first. 

In Section 2 we briefly revise some of the details of the amplitude 
equation. We describe the two possible propagating fronts which can occur 
as solutions of the amplitude equation. We make three conjectures concer- 
ning the pattern selection properties of these fronts. In Section 3 we present 
a calculational tool for predicting the velocity of these fronts and in some 
circumstances the state selected by the front. We also discuss the initial 
transients caused by the initial conditions. In Section4 we present 
numerical results for the amplitude equation. In Section 5 we present some 
conclusions. 
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2. THE AMPLITUDE EQUATION 

The state of a pattern-forming system is described by a function u, 
where u is in general a vector function. The dynamical equations for the 
system are in general nonlinear and can be written in the form 

F [ u ]  = 0  (2.1) 

where F is a differential or integrodifferential operator. There exists a 
stationary solution of Eq. (2.1) which we call a homogeneous state and for 
the sake of simplicity we choose this to be the state u ,=0 .  The term 
homogeneous simply implies that there is no pattern present. A standard 
practice in such nonlinear problems is to perform a linear stability analysis 
about this state. To do this we consider perturbations of the state u~.= 0 
which are of the form 

~ e ikx + '~ (2.2) 

We will restrict all following discussions to one-dimensional systems. Sub- 
stituting (2.2) into the equation of motion (2.1) and linearizing in ~b, where 
~b is assumed to be small, we can obtain the dispersion relation co(k, v): In 
Fig. 1 we show a plot of co(k, v) for different values of v for a typical pat- 
tern-forming system. Since positive values of the real part of co indicate 
instability, the pertinant feature of Fig. 1, which is common to the pattern- 
forming systems mentioned in Section 1, is that co as a function of v first 
becomes positive at a finite wave vector kc. 
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Fig. 1. A plot of the function o)(k, v) for values of v less than, equal to, and greater than v C. 
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To describe the dynamics of the system close to vc we can make use of 
two facts. The first of which is that for v > vca  small band of wave vectors 
Ak exists for which the system is unstable. Secondly, co(k, v) is small for 
wave vectors in this band Ak. This reflects the fact that the linear growth 
rate of these unstable modes is small. If a pattern solution exists just above 
onset, we expect it to have a wave vector which is close to kc. These facts 
lead us to make the following ansatz for u: 

u ~ A ( x ,  t)eikcX + A*(x, t)e -ikc~ (2.3) 

where A is a complex function and depends weakly on x and t. Since a 
clear separation of space and time scales exists, we can use the standard 
methods of multiple-scales (8'4) analysis to derive the equation of motion for 
A(x, t). This equation is known as the amplitude equation (4) and is of the 
form 

~A 
c~--[= C~2x A + AvA - A* IAI 2 (2.4) 

The coefficients in Eq. (2.4) have been set to one but they will in general 
depend on the parameters of the model. However, by rescaling A, x, and t 
it is always possible to write the equation in the form given by (2.4). 

Stationary solutions of Eq. (2.4) are of the form 

As(x) = lAy(1 - q2)] m eiq(av)l/2x (2.5) 

These solutions correspond to patterns with a fundamental wave number 
k =  kc+ (Av)l/Zq. Stationary solutions exist for all values of k for which 
co(k,v)>~0. Those solutions for which q2>qg= 1/3 are found to be 
unstable to an instability known as the Eckhaus instability. This instability 
is associated with long wavelength phase disturbances. A band of stable 
solutions exists for q2< qg. This situation is illustrated in Fig. 2 where we 
show a plot of v versus k showing the neutral stability curve, i.e., the points 
in the v, k plane where co(k, v ) =  0. This line is denoted by the full curve. 
Stable pattern states exist for those values of v and k above the dashed 
curve. 

There are two possible quenches in the value of v which we can per- 
form in order to produce the conditions necessary in order to form a 
propagating front. These two options are denoted by the labels (A) and (B) 
in Fig. 2. In case (A) we begin with the system at a value of vi< vc where 
the homogeneous state is stable and quench to a value of vy > Vc where this 
state is now unstable. We then disturb the homogeneous state locally at the 
origin and observe the decay to stable solution. After some initial transients 



Propagation into an Unstable State 709 

\ IT / 

L > 

k c k 
Fig. 2. A plot showing the neutral stability curve, which is denoted by the full line. Stable 
stationary pattern states exist above the dashed line. Also shown are the two different types of 
possible quenches for this system, which are labeled (A) and (B). 

we will observe the formation of a propagating front which connects the 
homogeneous state to one of the allowed pattern states. An example of 
such a front for the amplitude equation is shown in Fig. 3a, where we plot 
the modulus of the amplitude A as a function of x and t. We next consider 
the quench labeled (B) in Fig. 2. In this case we start at v i>  vc where the 
system is in a stable stationary pattern state. Then v is changed to a value 
v z > vc. There exists a stationary solution of the equations of motion at this 
value of v and k. This state, however, is unstable to long wavelength phase 
disturbances. The initial state will relax to the stationary solution at vf and 
this values of k since this state is stable against amplitude perturbations. 
We can now introduce a small local disturbance at the origin and observe 
the subsequent decay of the pattern state to one of the stable pattern states 
at this value of v. As in case (A) a propagating front will develop but this 
front will connect two pattern states. Such a front is shown in Fig. 3b for 
the amplitude equation. We observe that the front exhibits quite com- 
plicated behavior in this case but that the mean position of the interface 
between the two patterns seems to move at a constant velocity. This 
behavior at the interface results from the fact that the two patterns have 
different spatial periodicities. Therefore in order for the stable pattern to 
propagate into the unstable pattern, the phase of the system must change 
discontinuously at the front. At such points the phase changes by + 2re and 
the amplitude of the pattern at the interface goes to zero. This results in the 
dynamical behavior observed in Fig. 3b for the amplitude equation. 

822/39/5-6-17 
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Fig. 3. (a) A propagating front of type (A) for the amplitude equation. We plot the modulus 
of the complex amplitude as a function of x for various equally spaced times. (b) A front of 
type (B) for the amplitude equation at equally spaced times, where again the modulus of the 
amplitude is plotted versus the x coordinate. 

These two types of propagating-front solutions will exist away from 
onset and the quantitative features may differ from system to system. We 
would like to predict the following properties of these propagating fronts: 
(a) What is the velocity of the front (b) what is the state selected in the 
wake of such a front? We will answer these questions here for the 
amplitude equation. Before we do this, however, we will make a number of 
conjectures about these types of propagating-front solutions in general. 

(i) There exists a natural propagation speed c* such that, if an obser- 
ver moves with a velocity c, the subsequent evolution is seen to approach 
the unstable state as t ~ oe if c > c*, but not to do so for c < c*. 



Propagation into an Unstable State 711 

(ii) There exists a naturally selected pattern k* which will be seen as 
t --, oo by an observer who is not moving. This observer, however, must be 
located at large enough x so that the pattern he sees is not effected by 
transients that may persist near the initial perturbation. 

(iii) The naturally propagating mode (c*, k*) is marginally stable 
against localized perturbations, that is, against perturbations which decay 
sufficiently fast as x --, oe. This marginal stability conjecture is equivalent to 
the statement that c* is the slowest stable propagating speed provided one 
excludes from consideration certain slowly propagating solutions which 
are, for topological reasons, inaccessible from the stated initial conditions. 
To demonstrate that this last conjecture is indeed true persents a difficult 
task. One has to demonstrate the existence of all possible propagating 
solutions and then perform a stability analysis of these solutions. 

3. T H E  P R O P E R T I E S  OF T H E  P R O P A G A T I O N  F R O N T  

In what follows we present a method for computing c* and k* by 
means of a linear stability analysis of the unstable state in a moving frame. 
Before this, however, we consider the nature of the initial transient 
evolution in the vicinity of the initial perturbation. Since the perturbation is 
small we can linearize the equations of motion. The solution of the 
linearized equations is of the form 

1 k u(x,  t) = ~ d Ft(k) e ikx+~~ (3.1) (2/r) 1/2 d 

where co(k) is the dispersion relation which can be obtained as described in 
Section2. At late times, i.e., as t ~ o e ,  the integral (3.1) can be 
approximated by performing a steepest decent calculation to give 

u(x,  t) ~- ~(l~) e ikx + o~(k), (3.2) 

where/~ is defined to be such that 

0co(k) k=~ 
Ok = 0 (3.3) 

We expect the region occupied by the initial transients to be dominated by 
the mode with wave number/~. This wave number is sometimes termed the 
fas tes t  growing mode  since co(k) has a maximum at this wave number. 
Crucial to the above argument is the fact the initial perturbation be small. 

We now turn our attention to computing c* and k* using an 
approach similar to that described above but in the spirit of conjecture 1. 



712 Dee 

We first make a transformation to a frame of reference moving at a velocity 
c in the positive x direction, say. Then the solution of the linearized 
equations in this frame of reference can be written in the form 

1 
u(x, t)~- ~ f dk ~(k) e -'kx+~(~)t+iCk' (3.4) 

In the case where u is a vector function we can perform a transformation 
on u so that the linearized operator is diagonal. In Eq. (3.4) k and co(k) are 
now complex. However, as before, we can compute the point of stationary 
phase from the equation 

0 0 ( k ,  c) k,, 0 where f2 = co(k) + ick (3.5) 
Ok 

We then solve for km, which depends on c. Returning to conjecture 1 
we note that if c is equal to c* we expect that Re(O) will be zero. This 
simply implies that we are in a frame of reference moving with the front. 
This does not exclude the fact that there may be some local time periodic 
behavior associated with the front as in case (B) described in Section 2. 
Therefore, to compute c* for a system where co(k, v) is known we simply 
compute k m using (3.5) and then use the following equation to compute c*, 
i.e., 

Re(O(k m, r = 0 (3.6) 

It should be pointed out that the above calculations may not always yield 
the correct values of c* as nonlinear aspcts of the motion of the front may 
be important. However, in most cases connected with pattern-forming 
systems the above calculation has proved successful. We should also state 
that the three conjectures are not invalidated in the cases where is does not 
succeed. 

To calculate the selected state one has to make a clear distinction 
between cases (A) and (B). In case (A) a pattern is forming in the presence 
of a homogeneous state. We can therefore use details of the linear stability 
analysis presented above to predict the final state (s) as follows. There are 
nodes formed as the leading edge of the front advances into the unstable 
state. In the frame of reference moving with the velocity c*, therefore, there 
is a flux of nodes in the - x direction at the front or at a point in the stable 
pattern in the wake of the front. At the front this flux of nodes is given by 
Im[g?(k,,, c*)].  In the bulk this flux is equal to k'e*; where k* is the wave 
vector of the bulk pattern in the wake of the front. Therefore equating these 
two expressions we obtain the result 

k* = Im[f2(km, c*)]/c* (3.7) 
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For case (B) (1~ one cannot predict exactly the final stable pattern 
from details of the linear stability analysis. This results from the fact that 
the initial and final states are connected in time by nonlinear events 
associated with the discontinuous change in the phase of the system which 
must occur at the front in order for it to advance. These points at which 
the phase changes discontinuously by 2~z are termed phase slip centers (11) 
(P.S.C.'s). Clearly, once the front has formed and moved well away from 
the region occupied by the initial transients, if we know the positions of the 
P.S.C.'s we can calculate the wave vector of the final state to be 

k : , = k i +  k s (3.8) 

where k, is 27z/2, and 2 s is the mean separation between the phase slip cen- 
ters. The plus an minus sign in Eq. (3.8) allows for the fact that the phase 
may increase or decrease by 27z at each P.S.C. We define 2s to be the mean 
separation between the P.S.C.'s because a complex but repeated pattern 
may result owing to the nonlinear nature of these events. This fact will 
become apparent when we consider the numerical results for the amplitude 
equations. 

If the nonlinear nature of these P.S.C.'s could be ignored, then one 
would predict that the P.S.C.'s would occur with a periodicity given by 
2m = 2z/Re(km). This would lead to a prediction of the final state wavevec- 
tor being 

k f  = ki +_ Re(kin) (3.9) 

It will be interesting to check Eq. (3.9) with the results of the numerical 
simulations for the amplitude equation. 

In Fig. 4 we show the velocity c* as calculated using Eqs. (3.5) and 
(3.6) for the amplitude equations. Case (A) corresponds to q,.= 1 and we 
calculate c* to be 2. The other values of q, i.e., qo < q < 1, correspond to 
case (B). We see that c* approaches zero at q0- In Fig. 5 we plot the bulk- 
selected wave vector for the amplitude equation. For case (A) we predict 
using (3.7) q ;=0 .  Also shown for case (B) is the prediction based on 
Eq. (3.9), which we do not expect to be exactly correct. 

From the above discussion we can draw some obvious conclusions 
concerning the pattern state selected in a system which has evolved via the 
formation of these fronts. Suppose the fronts are initiated at equally spaced 
points. If these points are close together then it is obvious that the sub- 
sequent evolution will be dominated by the initial transients described 
above, and hence the wave vector selected will be close to/~ where k? is the 
fastest growing mode, If the initiation points are very far apart, then the 
fronts will form and the evolution of the system will be dominated by these 
propagating solutions. Therefore the final state selected in such a system 
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Fig. 4. A plot of the natural velocity c* versus the value of q for the initial state. The dots 
indicate the results of the numerical simulation. 

Fig. 5. 
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A plot of the quantity q:, selected by the propagating front for different values of ql. 

The dots indicate numerical observations. 
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will be close to k*. At intermediate values of the initial spacing we expect 
the final state to be between/~ and k*. For  the amplitude equations we see 
from the above analysis of fronts of type (A) that/~ and k* are the same. 
However away from onset /~(v) and k*(v) are different (5) and the above 
argument suggests that if the evolution of the system takes place via these 
propagating fronts then the final state will be bounded by/,7 and k*. 

4. N U M E R I C A L  RESULTS 

To test the calculations of the last section, we performed numerical 
simulations on propagating-front solutions of the amplitude equation, of 
the types (A) and (B) as described in the previous sections. To perform the 
numerical simulation we define new variables u~ and u2 such that 

A = ul + iu2 

Then ul and//2 satisfy the following dynamical equations: 

(4.1) 

0//1 

at 

0//2 

at 

- a2xUl + u,(1 - / /~  - u~) 

__ a 2 / / 2  ..}_ /12( 1 - -  //2 - - / / 2 )  

(4.2a) 

(4.2b) 

where we have set Av = 1 for convenience. We used an implicit scheme to 
integrate Eqs. (4.2). Initially the whole system was occupied by the 
unstable state which for case (A) was u, = 0, u2 = 0 and for case (B) was 

u 1 = (1 - q~)m cos(qix) and u 2 = (1 - q2)1/2 sin(qix) 

We then perturbed the initial state at the origin. After some initial trans- 
ients a front developed and propagated into the unstable state. For  case 
(A), as illustrated in Fig. 3a we simply tracked the position of the interface 
and computed the velocity. We also monitored the state in the wake of the 
front. In case (B), as illustrated by Fig. 3b, we recorded the positions of the 
phase slip centers, i.e., the points where A was zero, and hence computed 
the velocity of the front. As in case (A) we also monitored the state in the 
wake of the front. 

The numerical results for the velocity are shown in Fig. 4. The dots 
indicate the numerical results. Better agreement can be obtained between 
the theoretical predictions and the numerical measurements by more 
accurate numerical procedures, i.e., by decreasing the grid sizes for the 
space and time variables for instance. In Fig. 5, we show the numerical 
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results for the state selected in the wake of the front. The pattern states are 
specified by the value of q, where the states for which qo < q < 1 are 
unstable and the states for which 0 < q < qo are stable. For  case (A) the 
theory and the numerical results agree exactly. For  case (B), as expected, 
the agreement between Eq. (3.9) and the numerical results decreases as the 
nonlinear nature of the initial condition increases, i.e., as qi decreases from 
q i=  1. At q~=0.6625 a discontinuity seems to occur in the data. This 
corresponds to a change in the behavior of the front as a function of time. 
For values of q~> 0.6625 the P.S.C.'s are equally spaced. For  q~<0.6625 a 
more complicated pattern of P.S.C.'s results simply reflecting the nonlinear 
nature of this front. (li) At q~0 .6325  a second discontinuity occurs 
corresponding to a further change in the pattern of P.S.C.'s at the front. 
Clearly more data are needed to establish the exact nature of this curve. It 
is clear from these numerical results, however, that (a) all the selected 
states lie in the set of allowed stable solutions and (b) that gaps exist in the 
band of allowed states which are not accessible by a system evolving via 
the mechanism of propagating fronts. 

5. C O N C L U S I O N S  

We have described two different types of propagating front solutions 
of the amplitude equation. The qualitative features of these solutions are 
expected to persist away from onset (5) and it will be of interest to 
investigate such solutions using the techniques outlined in Section 3. Using 
these analytical methods one can calculate the velocity of both types of 
fronts and in the case of fronts of type (A) one can also predict the state 
selected in the wake of the front. 
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